Data Science Training by Experts

;

Our Training Process

Data Science - Syllabus, Fees & Duration

MODULE 1

  • The Data Science Process
  • Apply the CRISP-DM process to business applications
  • Wrangle, explore, and analyze a dataset
  • Apply machine learning for prediction
  • Apply statistics for descriptive and inferential understanding
  • Draw conclusions that motivate others to act on your results

MODULE 2

  • Communicating with Stakeholders
  • Implement best practices in sharing your code and written summaries
  • Learn what makes a great data science blog
  • Learn how to create your ideas with the data science community

MODULE 3

  • Software Engineering Practices
  • Write clean, modular, and well-documented code
  • Refactor code for efficiency
  • Create unit tests to test programs
  • Write useful programs in multiple scripts
  • Track actions and results of processes with logging
  • Conduct and receive code reviews

MODULE 4

  • Object Oriented Programming
  • Understand when to use object oriented programming
  • Build and use classes
  • Understand magic methods
  • Write programs that include multiple classes, and follow good code structure
  • Learn how large, modular Python packages, such as pandas and scikit-learn, use object oriented programming
  • Portfolio Exercise: Build your own Python package

MODULE 5

  • Web Development
  • Learn about the components of a web app
  • Build a web application that uses Flask, Plotly, and the Bootstrap framework
  • Portfolio Exercise: Build a data dashboard using a dataset of your choice and deploy it to a web application

MODULE 6

  • ETL Pipelines
  • Understand what ETL pipelines are
  • Access and combine data from CSV, JSON, logs, APIs, and databases
  • Standardize encodings and columns
  • Normalize data and create dummy variables
  • Handle outliers, missing values, and duplicated data
  • Engineer new features by running calculations • Build a SQLite database to store cleaned data

MODULE 7

  • Natural Language Processing
  • Prepare text data for analysis with tokenization, lemmatization, and removing stop words
  • Use scikit-learn to transform and vectorize text data
  • Build features with bag of words and tf-idf
  • Extract features with tools such as named entity recognition and part of speech tagging
  • Build an NLP model to perform sentiment analysis

MODULE 8

  • Machine Learning Pipelines
  • Understand the advantages of using machine learning pipelines to streamline the data preparation and modeling process
  • Chain data transformations and an estimator with scikit- learn’s Pipeline
  • Use feature unions to perform steps in parallel and create more complex workflows
  • Grid search over pipeline to optimize parameters for entire workflow
  • Complete a case study to build a full machine learning pipeline that prepares data and creates a model for a dataset

MODULE 9

  • Experiment Design
  • Understand how to set up an experiment, and the ideas associated with experiments vs. observational studies
  • Defining control and test conditions
  • Choosing control and testing groups

MODULE 10

  • Statistical Concerns of Experimentation
  • Applications of statistics in the real world
  • Establishing key metrics
  • SMART experiments: Specific, Measurable, Actionable, Realistic, Timely

MODULE 11

  • A/B Testing
  • How it works and its limitations
  • Sources of Bias: Novelty and Recency Effects
  • Multiple Comparison Techniques (FDR, Bonferroni, Tukey)
  • Portfolio Exercise: Using a technical screener from Starbucks to analyze the results of an experiment and write up your findings

MODULE 12

  • Introduction to Recommendation Engines
  • Distinguish between common techniques for creating recommendation engines including knowledge based, content based, and collaborative filtering based methods.
  • Implement each of these techniques in python.
  • List business goals associated with recommendation engines, and be able to recognize which of these goals are most easily met with existing recommendation techniques.

MODULE 13

  • Matrix Factorization for Recommendations
  • Understand the pitfalls of traditional methods and pitfalls of measuring the influence of recommendation engines under traditional regression and classification techniques.
  • Create recommendation engines using matrix factorization and FunkSVD
  • Interpret the results of matrix factorization to better understand latent features of customer data
  • Determine common pitfalls of recommendation engines like the cold start problem and difficulties associated with usual tactics for assessing the effectiveness of recommendation engines using usual techniques, and potential solutions.

Download Syllabus - Data Science
Course Fees
10000+
20+
50+
25+

Data Science Jobs in Tucson

Enjoy the demand

Find jobs related to Data Science in search engines (Google, Bing, Yahoo) and recruitment websites (monsterindia, placementindia, naukri, jobsNEAR.in, indeed.co.in, shine.com etc.) based in Tucson, chennai and europe countries. You can find many jobs for freshers related to the job positions in Tucson.

  • Data Scientist
  • Data Analyst
  • Data Engineer
  • Data Storyteller
  • Machine Learning Scientist
  • Machine Learning Engineer
  • Business Intelligence Developer
  • Database Administrator
  • ML Engineer
  • Computer Vision Engineer

Data Science Internship/Course Details

Data Science internship jobs in Tucson
Data Science To succeed as a data scientist, you must, nevertheless, make a particular effort to apply soft skills. There are numerous reasons why you should take this course. Exercises, tasks, and projects that are completed in real-time 24 hours a day, 7 days a week, A large network of like-minded newbies, an industry-recognized intellipaat credential, and individualized employment support Several data scientist responsibilities are listed below. Identify and collect data from data sources. Effectively analyze both organized and unstructured data Create strategies to address company issues. You may learn all of the skills and talents required to become a data scientist by enrolling in the top data science online courses in Tucson. Create data strategies with the help of team members and leaders. Creative thinking, problem-solving skills, curiosity, and a drive to learn about and investigate industry trends and development, as well as teamwork, are among the soft skills required by data scientists. A Data Scientist is a highly skilled someone with advanced mathematical, statistical, scientific, analytical, and technical abilities who can prepare, clean, and validate organized and unstructured data for industries to utilize in making better decisions. This curriculum prepares you to work in a variety of Data Science professions and earn top-dollar wages.

List of All Courses & Internship by TechnoMaster

Success Stories

The enviable salary packages and track record of our previous students are the proof of our excellence. Please go through our students' reviews about our training methods and faculty and compare it to the recorded video classes that most of the other institutes offer. See for yourself how TechnoMaster is truly unique.

List of Training Institutes / Companies in Tucson

  • FirstChoiceTaxServices | Location details: 3950 N Campbell Ave, Tucson, AZ 85719 | Classification: Tax preparation service, Tax preparation service | Visit Online: 1stchoicetaxservices.com | Contact Number (Helpline): (520) 320-1041
 courses in Tucson
By at least four hundred B. ) webweb page recognised from the Tucson Basin is determined in Ruelas Canyon, south of the Tortolita Mountains (Swartz 1998:24). While there's variability amongst those webweb sites—likely because of the 2,150 years blanketed withinside the duration—all excavated webweb sites to date include small, spherical, or oval semisubterranean pithouses, many with big inner garage pits. C. A simple define of the cultural records of the vicinity and a dialogue of preceding studies withinside the mission region are provided on this chapter. A Clovis fluted spear factor function of the early Paleoindian duration (circa 11,500-11,000 B. ) The transition from the Paleoindian duration to the Archaic duration become followed through marked climatic adjustments. Archaic duration webweb sites withinside the Santa Cruz floodplain had been determined to be deeply buried through alluvial sediments, suggesting greater of those webweb sites are present, however undiscovered because of the shortage of floor evidence. The reality that marine shell and a number of the cloth used for stone gear and adorns had been now no longer regionally to be had withinside the Tucson region shows change networks had been operating. CULTURAL BACKGROUND The records of the Southwest and the Tucson Basin is marked through a near courting among humans and the herbal environment.

Trained more than 10000+ students who trust Nestsoft TechnoMaster

Get Your Personal Trainer