Data Science Training by Experts

;

Our Training Process

Data Science - Syllabus, Fees & Duration

MODULE 1

  • The Data Science Process
  • Apply the CRISP-DM process to business applications
  • Wrangle, explore, and analyze a dataset
  • Apply machine learning for prediction
  • Apply statistics for descriptive and inferential understanding
  • Draw conclusions that motivate others to act on your results

MODULE 2

  • Communicating with Stakeholders
  • Implement best practices in sharing your code and written summaries
  • Learn what makes a great data science blog
  • Learn how to create your ideas with the data science community

MODULE 3

  • Software Engineering Practices
  • Write clean, modular, and well-documented code
  • Refactor code for efficiency
  • Create unit tests to test programs
  • Write useful programs in multiple scripts
  • Track actions and results of processes with logging
  • Conduct and receive code reviews

MODULE 4

  • Object Oriented Programming
  • Understand when to use object oriented programming
  • Build and use classes
  • Understand magic methods
  • Write programs that include multiple classes, and follow good code structure
  • Learn how large, modular Python packages, such as pandas and scikit-learn, use object oriented programming
  • Portfolio Exercise: Build your own Python package

MODULE 5

  • Web Development
  • Learn about the components of a web app
  • Build a web application that uses Flask, Plotly, and the Bootstrap framework
  • Portfolio Exercise: Build a data dashboard using a dataset of your choice and deploy it to a web application

MODULE 6

  • ETL Pipelines
  • Understand what ETL pipelines are
  • Access and combine data from CSV, JSON, logs, APIs, and databases
  • Standardize encodings and columns
  • Normalize data and create dummy variables
  • Handle outliers, missing values, and duplicated data
  • Engineer new features by running calculations • Build a SQLite database to store cleaned data

MODULE 7

  • Natural Language Processing
  • Prepare text data for analysis with tokenization, lemmatization, and removing stop words
  • Use scikit-learn to transform and vectorize text data
  • Build features with bag of words and tf-idf
  • Extract features with tools such as named entity recognition and part of speech tagging
  • Build an NLP model to perform sentiment analysis

MODULE 8

  • Machine Learning Pipelines
  • Understand the advantages of using machine learning pipelines to streamline the data preparation and modeling process
  • Chain data transformations and an estimator with scikit- learn’s Pipeline
  • Use feature unions to perform steps in parallel and create more complex workflows
  • Grid search over pipeline to optimize parameters for entire workflow
  • Complete a case study to build a full machine learning pipeline that prepares data and creates a model for a dataset

MODULE 9

  • Experiment Design
  • Understand how to set up an experiment, and the ideas associated with experiments vs. observational studies
  • Defining control and test conditions
  • Choosing control and testing groups

MODULE 10

  • Statistical Concerns of Experimentation
  • Applications of statistics in the real world
  • Establishing key metrics
  • SMART experiments: Specific, Measurable, Actionable, Realistic, Timely

MODULE 11

  • A/B Testing
  • How it works and its limitations
  • Sources of Bias: Novelty and Recency Effects
  • Multiple Comparison Techniques (FDR, Bonferroni, Tukey)
  • Portfolio Exercise: Using a technical screener from Starbucks to analyze the results of an experiment and write up your findings

MODULE 12

  • Introduction to Recommendation Engines
  • Distinguish between common techniques for creating recommendation engines including knowledge based, content based, and collaborative filtering based methods.
  • Implement each of these techniques in python.
  • List business goals associated with recommendation engines, and be able to recognize which of these goals are most easily met with existing recommendation techniques.

MODULE 13

  • Matrix Factorization for Recommendations
  • Understand the pitfalls of traditional methods and pitfalls of measuring the influence of recommendation engines under traditional regression and classification techniques.
  • Create recommendation engines using matrix factorization and FunkSVD
  • Interpret the results of matrix factorization to better understand latent features of customer data
  • Determine common pitfalls of recommendation engines like the cold start problem and difficulties associated with usual tactics for assessing the effectiveness of recommendation engines using usual techniques, and potential solutions.

Download Syllabus - Data Science
Course Fees
10000+
20+
50+
25+

Data Science Jobs in San Antonio

Enjoy the demand

Find jobs related to Data Science in search engines (Google, Bing, Yahoo) and recruitment websites (monsterindia, placementindia, naukri, jobsNEAR.in, indeed.co.in, shine.com etc.) based in San Antonio, chennai and europe countries. You can find many jobs for freshers related to the job positions in San Antonio.

  • Data Scientist
  • Data Analyst
  • Data Engineer
  • Data Storyteller
  • Machine Learning Scientist
  • Machine Learning Engineer
  • Business Intelligence Developer
  • Database Administrator
  • ML Engineer
  • Computer Vision Engineer

Data Science Internship/Course Details

Data Science internship jobs in San Antonio
Data Science To succeed as a data scientist, you must, nevertheless, make a particular effort to apply soft skills. Today's Data Scientists must possess a wide range of abilities, including the ability to work with large amounts of data, parse that data, and translate it into an easily comprehensible format from which business insights may be drawn. Identify and collect data from data sources. A Data Scientist is a highly skilled someone with advanced mathematical, statistical, scientific, analytical, and technical abilities who can prepare, clean, and validate organized and unstructured data for industries to utilize in making better decisions. You'll have a personal mentor who will keep track of your development. . The Data Science Process, Communicating with Stakeholders, Software Engineering Practices, Object-Oriented Programming, Web Development, ETL Pipelines, Natural Language Processing, Machine Learning Pipelines, Experiment Design, Statistical Concerns of Experimentation, A/B Testing, and Introduction to Recommendation Engines are some of the topics covered in. Effectively analyze both organized and unstructured data Create strategies to address company issues. To find trends and patterns, use algorithms and modules. The top Data Science course online for professionals who wish to expand their knowledge base and start a career in this industry is NESTSOFT in San Antonio.

List of All Courses & Internship by TechnoMaster

Success Stories

The enviable salary packages and track record of our previous students are the proof of our excellence. Please go through our students' reviews about our training methods and faculty and compare it to the recorded video classes that most of the other institutes offer. See for yourself how TechnoMaster is truly unique.

List of Training Institutes / Companies in San Antonio

In 1857, the Normal School`s reason changed into totally to teach instructors. ” These ambitious statements have been a part of a speech brought via way of means of State Superintendent of Public Instruction Oscar Fitzgerald in 1870 upon breaking floor for the primary State Normal School at Washington Square in San José—a college that might subsequently emerge as SJSU. By the quit of the decade, Gold Rush fever demanded great portions of mercury to create the amalgam miners used to get better gold for the duration of mining. Their descendants now call themselves Ohlone, and San Jose`s Alum Rock Park changed into once domestic to one of the Ohlone hunter-gatherer tribes, who have been the primary of many to form the records of San Jose. It changed into in the beginning a metropolis college, turning into a kingdom college via way of means of designation of the State Legislature in 1862. San José State University`s lengthy records—that has shaped schooling in California and the individual of the City of San José, commenced in 1857 with Minn`s Evening Normal School in San Francisco. Castillero and New Almaden – California`s First Major Mining Operation Before the Gold Rush, the hills round San Jose sounded with the din of mining paintings. The Ohlone lengthy appreciated the crimson ore, cinnabar and delivered their supply to Mexican navy captain and mining engineer, Andres Castillero. Castillero diagnosed it as a supply of mercury and in 1845, he commenced to mine ore and bring mercury (“quicksilver”) in south San Jose. Many matters have modified on the grounds that SJSU commenced in 1857.

Trained more than 10000+ students who trust Nestsoft TechnoMaster

Get Your Personal Trainer